
F I R S T D R A F T — P L E A S E D O N ’ T C I R C U L A T E

Copyright © 1995 Brian Cantwell Smith Printed at 10:52 PM on August 14, 1995

Up and Down, Instead of Across
A new way to think about replication, synchronization, and duplication

Brian Cantwell Smith

Replication is hot. Everyone wants to synchronize distributed copies of files—from Lotus
Notes aficionado to laptop user to distributed data base manager. Wouldn’t it be wonderful
to be able to use the “same” mailbox from a portable, at home, at the office?

This memo argues for an odd conclusion (1st cut): that the notions of replication, syn-
chronization, and duplication, in terms of which this class of problem is normally formulated,
are the wrong way to understand replication, synchronization, and duplication.

1. Abstract entities

We meet at a conference; talk for hours about a neat idea. That night, in the hotel, I decide
to write. Write what? A paper. Or some notes, a memo, an IP—whatever. But definitely not a
“set of synchronized files.”

Some analogies. (i) The 1978 bmw 3.0csi was one of the most beautiful cars ever de-
signed. “One” of the most beautiful cars. Yet they made lots of them. I don’t own one, un-
fortunately. All I hanker after, though, is an instance of the car that was designed. (ii) Shake-
speare’s The Tempest is old; it was written in 1588. There are lots of copies of The Tempest
around, including a dog-eared copy in my study. It’s old, too. It was printed in 1968.
(iii) The New York Times makes lots of money. Today’s New York Times has an article about
Jerry Garcia. My copy of the New York Times is rolled up into a wad. I just used it to squash
a bug. (iv) Etc. What these examples show is that people are entirely used to dealing with
“same” object(s?) at many different levels of abstraction.

We need to give our systems commensurate skills. In this memo, as a tiny first step, I will
argue (2nd cut) that the proper—best, most natural—way to think about replication and dis-
tributed data is not, especially in the first instance, as a symmetrical, transitive, etc.,
“horizontal” relationship among a plurality of entities. Rather, or so at least I claim, systems
and their designers should think about the issue in the same way that users (implicitly) think
about it: “vertically,” as instances (copies, editions, performances, whatever) of a single, more
abstract, unity.

U P A N D D O W N , I N S T E A D O F A C R O S S

– 2 –

2. Setup

As the New York Times example illustrates, the division of one into many can be recursive.
One thing (the New York Times, in the abstract—the thing that is generally pretty neutral,
though somewhat biased towards Israel) can give rise to lots of more specific things (each
day’s “issue”), which can in turn give rise to more different things (the Eastern, Midwestern,
and Western “editions”), which in turn give rise to yet more (the one I used to squash the
bug, others I picked up this morning for my daughter’s paper route).

Here, though, for simplicity, I will consider only single cases of this one-many fanout.
That simplification will allow me to use the following (relativist) terminology: abstract for the
thing of which there is one; concrete for the things of which there are many.

One other introductory point. Note that the “fan-out” under discussion here, from one
to many, is different from another more-familiar kind, of a whole into its potentially many
parts. Using a term from philosophy, I will label the latter (part-whole) relationship mereolog-
ical fan-out. The former, the one I am interested in here, I will refer to as instantiation fan-
out.

The main example I will use will be the “manuscript” you and I decide to write after we
get home from the conference. I would say ‘paper’, except that the project quickly blossomed
into a full book—13 chapters, each with half a dozen associated files (notes, text, outline, fig-
ures, references, etc.), all stored in a hierarchical directory structure. I have a Powerbook, an
office Mac, and a Mac at home. I would like to work on the manuscript on all three ma-
chines. The problems to be dealt with are the obvious ones: how can I edit, reorganize, and
generally work on the files on all three machines simultaneously, coordinating disks from
time to time, without everything getting all out of synch, all bolloxed up?

3. State of the art

This problem isn’t new. Many people are dealing with it—from the designers of Lotus
Notes, as mentioned, to programmers at Oracle, to hapless millions who try to do it by hand.
Also, far from least, the Bayou folks, at parc.

On the Mac, there are commercially available utilities whose sole function is to provide
this kind of synchronization service. I’ve tried them all, and they all fail. Two examples will
indicate their mode of failure (a third is discussed at the end of the paper):

1. Assume that files a and a ′, on the Powerbook and office machine, respectively,
have previously been synchronized. At work, I rename a, and move it into a dif-
ferent folder/directory (as part of an effort to tidy up my desktop). On the

U P A N D D O W N , I N S T E A D O F A C R O S S

– 3 –

Powerbook, I edit its contents. When I next synchronize, I end up (in most pro-
grams) with two files on each machine: one properly renamed and moved, but
with out-of-date contents; the other with up-to-date contents, but in the old
place and with the old name.

2. One day, on my office machine, as an efficiency hack, I set up some pointers to
allow me to move quickly between various e-mail mailboxes. I implement these
as Mac file system aliases (indirect pointers). So file a points to file b, file c
points to file d, etc. Then I synchronize with the Powerbook. The process runs
to completion without complaint, synchronizing a with a′, b with b′, etc. With
Powerbook in hand, I head for the airport. That night, in New York, I open file
a′, and try to follow its link. Rather than being led to b′, I am presented with an
error message, saying that my office disk is not mounted. Even though the syn-
chronization routine itself synchronized b with b′, the new pointer (alias) that it cre-
ated in file a′ points to file b, not to b′. It’s as if the program’s right hand doesn’t
know what its left hand is doing!

My claim is that these programs are failing (the designers aren’t implementing the “right”
behavior) because they don’t fully appreciate the following essential fact:

➊Principle of Abstraction: As a user, I don’t want to think about different ver-
sions at all. I want to deal with my manuscript as a single, coherent unity.

By analogy, consider file caches. File caches keep some data in memory, data that is also
stored on disk. There being two places where the data is kept, issues of coordination come
up. Sometimes (e.g. in caches that don’t implement write-through) the coordination can get
pretty hairy. In general, though, whether supported by mechanisms simple or complex, the
overall level of coordination achieved is perfect—not in the sense that the data in memory
and the data on disk are always identical, which they often will not be, but because the per-
son (or program) using the file system can assume that they are always identical. As a result,
they can assume that they are dealing with a single, unitary thing (a file), not with multiple
anythings. In sum: even though perfect on-the-run coordination isn’t always metaphysically
possible, the system is nevertheless able to achieve the requisite level of behavior to allow it to
be treated as if were perfectly coordinated.1

1This paper skirts over (and was part motivated by) all sorts of wondrously complex theoretical issues. For
example: it is a nice piece of homework to spell out the relationships between existence, concreteness, and
singularity. They are definitely not the same thing. For starters, one might think that they should be opposed to
non-existence, abstractness, and distribution, respectively. But even that is probably false. In computer science
(and for simplicity of discussion, in this memo) we sometimes think that abstraction is opposed to concreteness.

U P A N D D O W N , I N S T E A D O F A C R O S S

– 4 –

❷

α
∇

time

…

β1
β2

β3

βk

…

β1

β2
β3

βk

t1

t0

∆1

∆k

α

•

•∆t
∆1

∆k

•
•

•
•

•

•
•

•

•

•

Figure 1 — Abstract and concrete entities

In distributed cases, perfection—even the illusion of perfection—is not in general achiev-
able. I hypothesize (this is pure speculation) that the reason that notions of replication, syn-
chronization, and duplication have entered users’ imaginations—i.e., the reason that users
have been forced to understand the situation in terms of a plurality of files (mailboxes, copies,
etc.), instead of a singular unity—is because the illusion of perfect singularity can’t always be
achieved.

That leads to another claim of this paper: Tough! Just because perfection can’t be
achieved doesn’t mean that the ideal should be abandoned. More seriously:

Principle of Calvinism: Rather than give users (i.e., us) a complex, plural story
that is the literal truth, give us a simple (singular) story that remains an un-
achievable ideal. And then tell us that the system fails. We’re grownups; we can
handle failure. We’ve seen it before.

More specifically, the aim will be to:

1. Think in terms of the (single) abstract entity whenever possible;
2. Think in terms of the (plural) concrete entities whenever necessary—including,

paradigmatically, those times when it is necessary to understand how the former,
singular, goal cannot be met.

4. Details

These mandates, I claim, lead to the following model of how to think about the overall sit-
uation, depicted in Figure 1. The upper line represents the time course of α, the single, ab-
stract object. The lower lines represent
the time courses of the multiple, concrete
entities βi that instantiate the abstract
one. In the current example, α would be
the book or paper; the βi would be differ-
ent file copies.

The following assumptions are made:
(i) t0 is the moment in the past when the
various concrete entities βi were last, as
they say, “synchronized”; (ii) during the

But to think of a hospital as a hospital is to think of it at quite a high-level of abstraction—far above the level of
the 2×4s, for example, let alone the arrangement of protein molecules in the wood cells. Yet hospitals are not
thereby rendered abstract in the sense of being immaterial, evanescent, or diaphanous.

U P A N D D O W N , I N S T E A D O F A C R O S S

– 5 –

interval ∆t from t0 until t1 (now) the concrete βi were (physically) separate; and (iii) during
that time a certain set of operations ∆i were performed on each the various βi (indicated in
the diagram as ∆1 and ∆k).

Given this setup, the problem we face is the following. At t1, “synchronization” time, a
new set of operations ∆i need to be performed on the various βi, in order to bring them all
into synch. More specifically, given:

1. States βi at time t1, and
2. Operations (transaction) ∆i

the challenge is to figure out the appropriate

3. “Clean-up” operations ∆i.

Two such clean-up operations are shown in the figure: ∆1 and ∆k.

5. Solution

The first step, given the overarching model, is to figure out what net abstract operation ∇ has
happened to abstract entity α.

As a first approximation, one might think that this should be the sum or union of all the
concrete transactions ∆i: i.e., something like U(∆i). But that isn’t quite right. In general, the
∆i, each of which is defined over a specific concrete entity βi, may be concerned with issues
specific to that concrete instance—issues that may or may not be shared by other concrete
instances, and may not be defined at all at the abstract level. (We will see lots of examples
below: questions about whether to use American or British spelling; whether to print out on
the printer at the office or the printer at home; which concrete instance to link a document
to).

So instead—this is where the model starts to have a technical impact—I introduce the
notion of “lifting” or “abstracting” an operation from the concrete to the abstract level, indi-
cated as ‘↑ ’. The net abstract transaction can then be represented as

∇ = U(↑∆i)

Given this, each net operation that should have happened to a concrete entity βk would be
approximately the “drop” or, as I will say, concretization of ∇ , indicated as ‘↓ ∇ ’. But since
dropping may be specific to the particular concrete instance, the concretization operation
should be indexed, as ‘↓ i’. So the net operation that should have happened to βk would in
fact be ↓k∇ .

U P A N D D O W N , I N S T E A D O F A C R O S S

– 6 –

Combining these two leads to what I will call the Synchronization Equation

❸∆k = ↓kU(↑∆i) – ∆k

Equation ❸ is pretty abstract. It is also parameterized on just about everything:

1. ‘∆k’ ≡ concrete operations
2. ‘↑ ’ ≡ abstract(ify)
3. ‘↓k’ ≡ concretize
4. ‘U’ ≡ abstract operation union (perhaps this should be ‘integrate’ or ‘sum’)
5. ‘–’ ≡ concrete operation difference

In a real-world example, these would all need to be defined. But still, even from this much,
one can see how the alias problem mentioned above would be solved. When, on one ma-
chine, I created an alias pointing to b, the lift operation would have result in a pointer to the
abstract entity b̂. Then, when this operation was concretized on the other disk, abstract b̂
would be concretized into what I called b′. So the “new” pointer on the synchronized disk
would automatically point to b′, as it should.

6. Discussion

What’s new in this model is the emphasis placed on abstraction and concretization operations,
and their use, in a kind of “up-and-down” fashion, as a way of moving around among repli-
cated instances. You might think that this sort of vertical thinking is more complicated than
going straight across. Strictly speaking that is only true for two instances,2 but anyway it is
not the high-order bit. Much more important is the claim that it is only in terms of an up-
and-down model that one can specify what kind of replication/synchronization behavior is
right.

Making the scheme practicable would require many domain-specific issues to be worked
out. Five general things can be said, of which four are relatively straightforward.

6.a. Implementation

First, regarding implementation, in a real-world setting the “abstract” entity α won’t quite
exist. Or perhaps it does exist, “always already,” without our help. Perhaps it is not a compu-

2In general, for n instances, the up and down model grows more complicated proportional to n, whereas the
horizontal model will grow more complicated proportional to n2. This becomes a serious issue only once the
concrete instances start to be different. See §s 7 & 8, below.

U P A N D D O W N , I N S T E A D O F A C R O S S

– 7 –

tational entity. Or maybe it is computational, but is not concrete. Whatever. The point is
only this: programmers building real systems will have to deal with concrete βis, not with αs.
That’s true; it is also why I formed ❸ so as not to mention α explicitly. It is also okay, as α is
doing its work anyway. In two ways: (i) by shaping the way we think about the problem; and
(ii) as something in terms of which to define what it is for the various concrete operations to
be correct. C’est suffis.

6.b. Aspects

Second, in any real setting, an important step in making this scheme manageable would be to
divide the operations ∆i into conceptually separable, and ideally (nearly) orthogonal, different
aspects. In the Mac file system, for example, the natural operations break into 5 kinds:

1. Create

2. Modify zero or more of

a. Name ⇐ i.e., Rename
b. Location ⇐ i.e., Move
c. Contents ⇐ i.e., Edit

3. Delete

These operations aren’t wholly independent. Create and delete, especially, each have a kind
of precedence over the others. The remaining ones, however, can be treated as independent.
So, as indicated at the beginning, I ought to be able to edit the contents of a file on one ma-
chine, move and rename all the files in a grand reorganization of my desktop on the other
machine, synchronize, and have the union of those two operations be the net result on both.
That should work because it makes sense in the abstract case: reconstructed at the abstract,
green, level, I simply edited, moved, and renamed a single abstract document structure.

6.c. Accountability

Third, I haven’t said anything about what happens when the model (or rather the user?) fails.
That is to say, when (for example) I edit the same document on both machines, incompati-
bly. In such a case, the union operation ‘U’ should presumably complain. Any number of
strategies are possible at this point: ask the user, privilege the most recent edit, split α into
two different abstract entities, etc. What is crucial, though, is another deep issue lying just
under the surface of this paper, relevant to the Calvinist Principle:

❹Principle of Accountability: when a system fails, it should fail intelligibly;
when it detects or reports a failure, it should make that failure intelligible.

U P A N D D O W N , I N S T E A D O F A C R O S S

– 8 –

Another argument in favor of the two-level model being proposed here (so I claim) is that it
is the proper model in terms of which to make synchronization failures intelligible. Tellingly,
current designers betray a tacit understanding of this in their (English) error messages. Thus
we are given “Conflict: you have edited this file on both sides” (emphasis added). Just so; this
says exactly the right thing. But note that its only possible interpretation is at the upper level,
because the only possible (singular) referent for the singular noun phrase “this file” is an ab-
stract file. And note, too, that this is a far more intuitive message than the only literally true
thing that could be said in terms of a purely horizontal model: “These two files have both
been edited since the last time they were synchronized.” Au fond, the fact that distinct files
have both been edited is only problematic because they were supposed to be treatable as one; the
fact that they are being synchronized is derivative.

There is a reason why the up-down model is especially well-suited to satisfying principle

❹. In general, accountability always requires two models: a primary one, in terms of which to
define or characterize success; and a secondary one, in terms of which to make discrepancy
from correctness (i.e., discrepancy from the primary model) coherent. The existence of ab-
stract and concrete entities neatly satisfies this requirement.

6.d. Mereology

Fourth, the operations would need to be defined, recursively, over the mereological (part-
whole) hierarchy. That, I take it, is the easy part. That’s why we went to graduate school.
Doing this would probably require protocols or APIs: so that my mail folder would recur-
sively apply the scheme to the individual mailboxes, the mailboxes would apply it to mes-
sages, and perhaps the word-processor would be asked to apply it to individual documents
(so as to generate the ‘union’ of a set of edits, for example). Note that, in each step down this
part-whole hierarchy, the specific set of applicable concrete operations (the ‘∆k’) would likely
change.

Would this be a good feature to add to the OpenDoc specification?

7. Differences

The fifth general issue is more difficult, but at the same time a (potential) source of consider-
able power. The “up-and-down” model supports the idea of there being differences among
different concrete instances. Some examples (in a recursive vein, I list four that are at least
relatively straightforward, and close with a fifth, that is considerably more challenging):

1. Partial replication: On your laptop you may want to store only the headers of
messages more than a month old. Otherwise, though, you should be able to treat

U P A N D D O W N , I N S T E A D O F A C R O S S

– 9 –

these emasculated messages in ordinary ways (file, forward, copy, and delete
them; include pointers to them in documents; embed them in outgoing mes-
sages). In the model, this could be achieved by defining the concretize operation
‘↓ laptop’ to throw-away message bodies.

2. Variant spellings and formatting: Suppose you want to store copies of your com-
pany’s business plan in the New York and London offices. In this case, you define
α to be a document consisting of an abstract string of atomic words, and have the
corresponding ‘↓NewYork’ and ‘↓London’ instantiate those words with British and
American spelling, respectively. The document could even be edited at either
end. Changing the heading of a section in New York to read “Analyze the Role of
Aluminum in Causing Alzheimer’s Disease” would automatically cause the Bri-
tish version to turn into “Analyse the role of aluminium in causing Alzheimer’s
disease.”

Extra credit: You could even have a single-copy instance of such a scheme, as
a model of spelling-correction: ‘↑ ’ could lift attempted spellings into abstract
words, the single corresponding ‘↓ ’ could spell them correctly!

3. Multiple languages: Alternatively, if you were ambitious, you could use the same
scheme for translation—keeping records in both French and Japanese, say. In this
case operating versions of the ‘↑ ’s and ‘↓ ’s might need human help. (Suggestions
like this also lead directly into complex issues of system localization or context-de-
pendence, discussed in §8, below.)

4. Versioning: Can this scheme be applied to versions? Who knows? Papers and
software might need to be treated differently. [In general, Paul Dourish thinks
not. Rē software, we should ask Jeem.]

8. Context and Intensionality

A fifth example focuses on yet another way in which current schemes fail.
No one, at the moment, is fool enough to ask ordinary synchronization routines to

maintain operating system software at disparate sites (e.g., to try to automatically synchronize
Mac System Folders). This should be supportable, however. It is certainly a crying need. To
do it right, though, one would need to be able to handle which I call indexical references—so
that “the local printer” could point to the Laser Writer down the hall when at work, and to
the Inkjet when in my study when at home.

In the proposed up-and-down scheme, such a strategy might be implemented by viewing
the abstract version of the operating system α as relatively-more intensional, and so phrased in

U P A N D D O W N , I N S T E A D O F A C R O S S

– 10 –

terms of indexical descriptions, and the concrete instances βi as (at least relatively more) ex-
tensional. The concretization operations ‘↓ ’s would then be charged with tying these inten-
sional descriptions to their appropriate context-dependent values. On this proposal, that is,
concretization would start to resemble classical context-dependent semantic valuation. Is that a
hack, an insight, or what?

9. Conclusion

The moral? Think “vertically” about abstract entities, concrete entities, and the relationships
between and among them (such as abstraction and concretization). And let the system pro-
grammers convert those thoughts, at the last possible moment, and at the lowest possible
level, into invisible “horizontal” synchronization operations on replicated media.

————————— ◆◆———————————

Appendix

… This is intended to be filled in by a two-part technical appendix: (i) one presenting (in abstract

outline) a general algorithm for recursively implementing ➌, given appropriate abstract and con-

crete operations, procedures to invoke on error, etc.; and (ii) an instantiation of those operations to

deal with the Mac file system case, including aliases (pointers), to show how this model solves the

problems identified in current commercial offerings. …

——end of file ——

